Page Type Page Type: Area/Range
Location Lat/Lon: 34.47600°N / 116.82°W
Activities Activities: Hiking, Sport Climbing, Bouldering, Scrambling
Seasons Season: Spring, Fall, Winter
Additional Information Elevation: 3965 ft / 1209 m
Sign the Climber's Log

Overview

Cougar Buttes are a series of rocky hills northeast of the town of Lucerne Valley in the Mojave Desert. They are perhaps best known as a cool spot to take your OHV. But the rocks are spectacular for leaving your vehicle and scrambling and climbing them on your own as well. The granitic rock formations are reminiscent of nearby Joshua Tree National Park. There are many fabulous formations including arches, caves, windows, and obelisks.

Summertime out here is hot, so the suggested times to visit would be late fall, winter, and early spring.

Find more about Weather in Lucerne Valley, CA
Click for weather forecast


Elevations range from about 3,200' to 3,965' (highest point in the Buttes).

Satellite image of Cougar Buttes from Google.

Getting There

Go east of Lucerne Valley on Hwy 247 then take Camp Rock Road north to Cambria Road and then make a right. This dirt road (well-graded at first, deterioates to sand later on) takes you into the heart of the buttes. From here explore as you wish - there are many roads. You may need high clearance and 4wd in the sandy/rocky sections.

If you don't have high clearance/4wd you may need to go further north to Granite Road and then turn right. This road is a little better than Cambria.

Red Tape

This is BLM land so there are few regulations. Obey all signs, protect wildlife and plantlife including the federally protected desert tortoise, and always pack out what you pack in.

Possession of glass beverage containers is prohibited.

Camping

Dispersed camping is allowed out here. Please pack out what you pack in! There is no fee and no services, besides two pit toilets on the north end of the buttes near the power lines. The stay limit is 14 days. Do not block roads with vehicles.

Geology

Cougar Buttes have similar geologic features as rock formations in Joshua Tree National Park. Here is some more information on how they were formed:

"How did the rocks take on such fantastic shapes? What forces sculpted them?

Geologists believe the face of our modern landscape was born more than 100 million years ago. Molten liquid, heated by the continuous movement of Earth’s crust, oozed upward and cooled while still below the surface. These plutonic intrusions are a granitic rock called monzogranite.

The monzogranite developed a system of rectangular joints. One set, oriented roughly horizontally, resulted from the removal—by erosion—of the miles of overlying rock, called gniess (pronounced “nice”). Another set of joints is oriented vertically, roughly paralleling the contact of the monzogranite with its surrounding rocks. The third set is also vertical but cuts the second set at high angles. The resulting system of joints tended to develop rectangular blocks. (figure 1) Good examples of the joint system may be seen at Jumbo Rocks, Wonderland of Rocks, and Split Rock.

As ground water percolated down through the monzogranite’s joint fractures, it began to transform some hard mineral grains along its path into soft clay, while it loosened and freed grains resistant to solution. Rectangular stones slowly weathered to spheres of hard rock surrounded by soft clay containing loose mineral grains. Imagine holding an ice cube under the faucet. The cube rounds away at the corners first, because that is the part most exposed to the force of the water. A similar thing happened here but over millions of years, on a grand scale, and during a much wetter climate.

After the arrival of the arid climate of recent times, flash floods began washing away the protective ground surface. As they were exposed, the huge eroded boulders settled one on top of another, creating those impressive rock piles we see today.

Visitors also wonder about the “broken terrace walls” laced throughout the boulders. These are naturally occurring formations called dikes. Younger than the surrounding monzogranite, dikes were formed when molten rock was pushed into existing joint fractures. Light-colored aplite, pegmatite, and andesite dikes formed as a mixture of quartz and potassium minerals cooled in these tight spaces. Suggesting the work of a stonemason, they broke into uniform blocks when they were exposed to the surface.

Of the dynamic processes that erode rock material, water, even in arid environments, is the most important. Wind action is also important, but the long-range effects of wind are small compared to the action of water.

The erosion and weathering processes operating in the arid conditions of the present are only partially responsible for the spectacular sculpturing of the rocks. The present landscape is essentially a collection of relict features inherited from earlier times of higher rainfall and lower temperatures."

From: http://www.nps.gov/jotr/naturescience/geologicformations.htm


Parents 

Parents

Parents refers to a larger category under which an object falls. For example, theAconcagua mountain page has the 'Aconcagua Group' and the 'Seven Summits' asparents and is a parent itself to many routes, photos, and Trip Reports.